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ABSTRACT

An active audio self-localization algorithm is described which is effective even for distributed sensor networks with
only coarse temporal synchronization. A practical implementation of a simple method of estimating ranges from
recordings of reference sounds is used. Pseudo-noise “chirps” are emitted and recorded at each of the nodes. Pair-
wise distances are calculated by comparing the difference in the audio delays between the peaks measured in each
recording. By removing dependence on fine grained temporal synchronization it is hoped that this technique can be
used concurrently across a wide range of devices to better leverage the existing audio sensing resources that
surround us. An implementation of this method using the Smart Architectural Surfaces development platform is
described and assessed. The viability of the method is further demonstrated in a mixed-device ad-hoc sensor-
network case using existing off-the-shelf technology.

1.  INTRODUCTION AND MOTIVATION

We are surrounded by digital devices that can
communicate, listen and learn. Many of the mobile
phones, music players, laptops, cameras and personal
assistants we carry are equipped with microphones,
speakers and some form of wireless communication. As
we sit with colleagues, family or friends, we create the
potential for ad-hoc microphone and speaker arrays.
These clusters of devices offer the resources of a
distributed audio sensor network. If their owners
desired, the impromptu collection of sound sensing
nodes could share information, detect the sounds they
each produce, and establish a common spatial
distribution.

It seems strange that the computers we use do not know
the physical position of people and things - something
that is so natural to us. Audio affords rich contextual
information of surroundings, movement and position.
Sound accompanies most human activity, providing
signatures that can inform emerging mobile computing
systems of the spaces they occupy and the people that
use them. A network of sensors benefit from their
spatial distribution, but must establish a common co-
ordinate system in order to use this information.

Active audio self-localization, in which nodes can both
produce and sense sounds as a means of measuring the
distance over which the sounds travel, has been
demonstrated to be an increasingly robust approach for
calibration, tracking and mapping in a number of

AES



Dalton and Bove. Audio-Based Self-Loc. for Ubiq. Sensor Nets.

AES 118th Convention, Barcelona, Spain, 2005 May 28–31

Page 2 of 7

dedicated hardware systems (see Bachrach et al.[1] for
an overview of recent work). Here a simple ranging
method[2] is used to extends these localization
approaches to a disparate system of sensors in which
fine-grained synchronization, speaker performance and
microphone calibration cannot be relied upon. Presented
in this paper is a description of a practical
implementation of this technique and an analysis of the
spatial co-ordinates derived from the measurements of
inter-node time of flight (ToF).

With advances in mobile computing and the adoption of
several effective communication protocols, and as
development environments for consumer electronics
open up, personal devices are becoming potent
components in future distributed ubiquitous systems. It
is only recently that the possibility of forming sensor
networks across multiple platforms has been discussed
(for example[3]), and yet the ability of a distributed
sensing system to make use of unanticipated resources
as they become available in an environment is an
appealing one. Consider a scenario in which several
sensor-network-ready devices happen to be within
range, phones placed on a table during a meeting for
example, or the devices scattered throughout a home.
They discover and establish contact with one another
through group forming protocol and then use a
distributed audio localization technique to establish their
own locations. This information is invaluable in
developing spatial awareness in these devices and
provides a basis for beam forming, sound tracking and
speaker array algorithms. By requiring only a
microphone, speaker and some form of inter-node
communication, but no access to low-level hardware, it
becomes possible to utilize any device with these basic
resources as part of an auditory scene analysis sensor
network. A microphone array can then be built on the
fly from these pervasive components with little
infrastructure.

2. BACKGROUND AND RELATED WORK

Ranging between sensors provides one component of
robust multi-modal location-sensing frameworks that
benefit from a combination of the properties, and
difference in failure modes, of triangulation, proximity
sensing and scene analysis techniques[4]. Audio is well
suited to room range measurements because the speed
of sound is slow enough for unspecialized hardware to
measure, with sufficient accuracy, the time of flight at
these distances. Long sound files can be stored easily
and processed with relative computational simplicity.

Architecturally, acoustics tend to be restricted to single
rooms and spaces, leading to a very human scale to
sound sensing. Sound is physically easy to produce and
detect, and features prominently as a core interface, both
input and output, in many devices. Further to using the
linear relation of distance and time of flight to
determine spatial information, the angle of a sound's
arrival and the reduction in amplitude, that falls off with
the radius from the source squared as the pressure wave
spreads, can also be used. However, angle must be
measured with specialized directional sensors, and
volume is difficult to calibrate between devices[5]. The
performance of any sound sensing approach depends on
environmental changes to the speed of sound, physical
occlusion, background noise and multi-path
reverberation[6]. Human factors must also be considered;
audible chirps can be distracting and pollute the sound
environment. High frequency noise triggers a natural
reflex that draws our attention. Madhavapeddy et al.[7]

have investigated using tonal qualities to better encode
and transmit information via sound in the presence of
humans.

Sound flight time measurement has matured in the fields
of location and imaging using echo return time, such as
medical ultrasound and marine sonar, and position
estimate and tracking of unknown sound sources, such
as passive sonar and ballistics location. For the cases in
which signals can be produced or detected at both ends
of a line to be measured, the task is greatly simplified.
The challenge with this approach is one of timing.
Sensor equipped devices must establish some common
time frame or comparison model in order to calculate
time of flight between emission and detection. One
common approach is to estimate unknown timing jitter
in the communication between devices in order to
synchronize. Another approach is to use precise
emission and arrival times of an electromagnetic
reference pulse, emitted synchronously with the sound
pulse. As the flight time at the speed of light can be
considered instantaneous over the ranges for which
audio can be detected, the difference in arrival times
yields the acoustic ToF. This is a popular choice for low
resource systems, in which memory for storing sound
and processing is limited, but access to low-level
hardware timing allows exact arrival and emission times
to be measured. Examples of self-localization systems
using dedicated ad-hoc  wireless sensor network
hardware layers such as the Mica motes or Crickets
have demonstrated 1-2 cm accuracy with this approach,
and robust performance in real-room[8], urban[9] and
natural[10] environments. These systems use either
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audible or ultrasound pulses. Another approach is to
determine ranges from a number of sensors to a
reference beacon, and establish a common co-ordinate
system using lateration[11]. Bachrach et al.[12] perform
Simultaneous Localization And Tracking (SLAT) with a
single moving reference node.

In cases of absolute timing comparison, synchronization
must be established between nodes. Network Timing
Protocol[13] has proven effective in networks; using jitter
estimation, redundancy and averaging to set and
maintain synchronization with a reference server. This
method, however, guarantees only on the order of a
hundred millisecond accuracy at points of high network
traffic. To improve on this, one successful approach is
to use a reference Radio Frequency (RF) pulse (for
example[14]). Comparing the difference in arrival time at
each node establishes a common time frame. This
method generally requires low-level access to time-
stamp the incoming signals in order to overcome
variation in delays due to buffering in the
communications layer. While this is convenient in
specialized hardware and operating systems, it requires
a solution specific to each processor, and so does not
migrate easily from one platform to the next.

Raykar et al.[2] have presented an approach to
positioning calibration with goals and constraints close
to those described here. Their work establishes separate
co-ordinates of both the microphones and speakers for a
collection of heterogeneous devices, which they term
General Purpose Computers (GPCs). They introduce the
technique used in this paper; a closed-form position
estimation of sensor-emitter pairs, using it as a close
initial guess in an iterative nonlinear least squares
minimization of position error functions, accounting for
the synchronization offset in each measurement. The
method is demonstrated in a 5 laptop, two-dimensional
case. The current work does not apply this optimization
step, assuming that the separation of the microphone
and speaker at each device, and the uncertainty
introduced by this, is small.

3. ALGORITHM AND METHOD

The approach presented here is intended for devices
with sufficient computational and storage resources to
record and process several seconds of sound. Full
duplex audio is required for simultaneous input and
output of sound, allowing a device to record its own
emitted sounds. Some form of communication protocol
is necessary; 802.11* WiFi, short range Bluetooth,

mobile telephone protocols such as GSM (Global
System for Mobile Communications), or even infrared
are all suitable candidates, as are combinations of these
with multi-modal devices to act as intermediaries. It is
even conceivable, although inefficient, to use an entirely
audio based system[7].

Unique reference signals for each of the nodes are
generated by calculating pseudo-random sequences.
These are phase-shift encoded onto a carrier frequency
and emitted as noise-like chirps. Maximal-length
sequences are used because of high auto-correlation and
bounded cross-correlation properties[15]. Using 511 bit
length sequences yields 48 unique identifiers, which are
assigned sequentially to the nodes. This assumes that
initial device discovery and group forming steps have
established the available resources in an environment
and given a count of the nodes, assigning an arbitrary
sequential ordering to the devices. A synchronization
technique such as Network Timing Protocol (NTP) is
then used to establish initial coarse timing agreement
allowing each device to chirp in order without overlap.
It is also possible to use other unique information (for
example least significant digits of IP address in a local
subnet) to establish chirp order. It is desirable to have as
accurate synchronization as possible, to reduce the
overall recording buffer length. However discrepancies
in synchronization can be tolerated with sufficient
recording memory. The limiting assumption, however,
is that any drift in synchronization between the clocks in
each device, over the length of the recording, must be
negligible. With a long recording, this may not be the
case. The orthogonal chirp sequences can be detected
even when two collide, further reducing the need for
exact synchronization.

A single recording of all of the sequentially arriving
chirps is made on each device to remove the
significance of any audio circuitry buffer latency that
can otherwise cause an unknown delay between the
arrival and detection of a sound. By correlating the
recordings against each of the known pseudo-random
sequences, strong peaks are identified at the arrival of
each of the sounds. Each device first finds the chirp it
emitted, this significantly louder part of the audio is
then suppressed before searching for the other chirps.
Following the approach of Girod et al.[6], a running
threshold, found by correlating the recording with a
noise-like sequence first, suppresses false peaks, despite
varying background noise levels, and so improves
robustness. The most direct path for an arriving sound is
found in most cases, as the first peak is generally
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detected even in reverberant and noisy real-room
conditions.

The time delay, in samples, is measured between the
chirp emitted at a node and each of the remaining peaks
detected in the recording. As Figure 1 shows, for two
nodes a and b, the time delay between peaks measured
at the device that chirps first (labeled a) is the arbitrary
time Tab between when the two chirps actually occurred,
plus the time of flight, T o F , between a  and b,
A=Tab+ToF. While the delay recorded at b is Tab  minus
the ToF from a to b, B=Tab-ToF. Clearly, calculating the
difference between the peak-to-peak delays measured at
a  and b  therefore yields twice the time of flight,
A–B=Tab-Tab+2ToF, thus essentially removing the
arbitrary time between the two auditory events from the

calculation without any knowledge of the absolute
synchronization of the two recordings. The error in this
measurement depends on the uncertainty in the position
of each of the four peaks detected and any drift between
the clocks at the two nodes. All measurements are
passed to a single device to iteratively calculate likely
relative positions. A multidimensional scaling
approach[16] is used to determine a likely three-
dimensional conformation from the Euclidean range
information between each pair of nodes in the graph.

4. IMPLEMENTATION AND RESULTS

The Smart Architectural Surface[17] is a distributed
sensor network test bed consisting of many large,
screen-sized, “tiles” lining the walls of a “smart” room.
Each component is intended to be an easily replaceable
node in a large sensor network, thus gaining robustness
from the redundancy of detectors and actuators, and
distributed processing in a room setting. The nodes
consist of sensor-equipped XScale processors running
Linux 2.4.27, and include a microphone, speaker and
802.11b wireless connection as well as video,
ultrasound, temperature and humidity input. The
internal hardware is similar to that in a PocketPC, and
algorithms developed on the tiles are expected to be
applicable to commodity handheld devices.  The
ranging algorithm has been initially implemented and
tested on this system. It is written in C++ using the
RtAudio[18] cross-platform audio API (application
programming interface).

0 22 38 47 91 127
22 0 46 36 87 125
38 46 0 26 52 90
47 36 26 0 41 86
91 87 52 41 0 57

127 125 90 86 57 0

Table I Calculated pair-wise range measurements (cm).

Figure 3 shows the results for ranging measurements
over the length of a room. The two devices were moved
apart in the plane perpendicular to the direction the
microphone and speaker are mounted. The pseudo-
random sequences are phase shift encoded onto a
11025 Hz bit rate carrier wave, and are emitted and
detected at 44100 samples per second. One sample
corresponds to a distance of 8 mm. The background
sound level in the room was measured giving a signal to
noise ratio of 16 dB. The ranging has an uncertainty of
~3 cm. The peak finding performs well despite a
stronger reflection than the line of sight signal, from a
flat surface parallel to the plane in which the tiles lie.

Figure 1 Emission and detection of chirps recorded at
each node. Device a chirps, and some arbitrary time Tab

later, device b chirps. The difference in inter-peak delay
between the two nodes yields twice the time of flight.

Figure 2 Smart Architectural Surfaces experimental set–up.
3D model generated from the audio range measurements
translated and rotated over sensor layout (3.3cm average error).
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Figure 4  Upper plot shows raw 8 kHz recording up-sampled to
44 kHz. The central block is the co-located chirp. Lower plot
shows correlation for the first chirp and corresponding peak.

Figure 3 Ranging performance and errors between two SAS tiles facing perpendicularly to the axis of separation.

Using these SAS tiles, a 6 device system, occupying
two walls, ran the self-localizing algorithm to establish
the position of each device relative to the others. Table I
shows the diagonally symmetrical range measurements
calculated taking the speed of sound, in air, at sea level
to equal 340.29 ms-1. Figure 2 shows the experimental
set-up overlaid with the sensor layout determined from
the range measurements. Neither the grid layout nor
planes of position were used as constraints. It was found
that even the furthest nodes were detected despite the
noise and reverberation levels in this real-room case,
leading to a fully connected graph. The average distance
between actual and estimated positions was 3.3 cm.

Although the code has not been fully migrated to a
number of small device programming platforms, it has
been possible to demonstrate its effectiveness across a
range of hardware. As proof of concept, and for brevity,
the devices are used to record the signals, but the
44 kHz chirp is generated and played from a co-located

SAS speaker. A test set of devices consisted of an HP
iPAQ running Familiar Linux, a Dell Axim running
Windows Mobile and a Nokia Symbian Series phone,
plus two SAS tiles. These devices span a range of
microphone performance levels, sound circuit jitter and
delays, and compression algorithms. Both the Axim and
the Nokia provide basic recording programs that sample
at a low 8 kHz rate. Figure 4 shows the performance of
cross-correlation peak detection on the 8 kHz Axim
recording, correctly detecting the first chirp. The phone
also uses the AMR, adaptive multi-rate, lossy speech
compression file type. These factors clearly reduce the
performance of the peak detection algorithm, and reduce
the sample resolution, however, peaks can still often be
found over a reduced sensing range. Figure 5 shows the
positions of the devices and the calculated estimates.
Input compression degrades the detection of chirps, but
seems to only contribute a small error to measurements
in cases when peaks are found. Figure 6 shows a
comparison of tile only and tile-phone ranging.

Figure 5  Localization
in multi-device system.
Calculated positions
(dots) overlaid on
actual device location.
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Figure 6  A comparison of ranging using 44 kHz recording
on the SAS platform and 8 kHz, lossy recording on a phone.

5. DISCUSSION

A simple method for finding pair-wise range
measurements between only coarsely synchronized
devices, equipped with microphones and speakers, has
been described and demonstrated. Correcting for the
effect on the speed of sound of environmental
conditions, error in the measurements is close to the
uncertainty in the sampling rates used. For 44100 Hz
samples in the tests described, this is approximately
3 cm. A lateral sensing case is presented, in which
sensors and emitters are directed perpendicularly to
their plane of separation. Pseudo-noise chirps are
calculated and correlation peaks found in the recordings
at each of the nodes, yielding calculations of ranges.
These can be passed to a number of existing
algorithms[2,8,9,12] to accurately establishing a common
co-ordinate system across the sensors in an ad-hoc
system. It is shown that using a multidimensional
scaling approach, the sensor network positions can be
retrieved up to global rotation and reflection of the
system.

Peak finding on the recordings occurs at each node. The
benefit of this is that only a small amount of
information, the length of the delays between peaks, has
to be passed over the communication channel. The
current results were taken using a correlation algorithm
that runs over the entire length of the recording and thus
proportionally scales the processing time with the
number of nodes. Running an initial peak-finding step
on a down-sampled version of the recording to identify
areas of interest first may increase the speed of the

algorithm. As the number of nodes in a densely
populated system grows, the approach can be modified
so that each sensor looks for peaks in a constrained time
window, such as the time for 6 chirps to have occurred
before and after the nodes own chirp. Multidimensional
scaling methods that improve performance in networks
containing a large number of nodes with a degree of
connectivity on the order of 10 neighbors or more, such
as Moore et al.[8] which avoids settling on false minima
in possible conformation, can be used in this case.

The Smart Architectural Surfaces platform has been
used in these tests, providing distributed processor and
sensor resources, and group-forming and
communications protocol. The algorithms have been
developed to function, with little modification, over a
large range of electronic devices. This is demonstrated
in a multi-device, real-room, test case. Despite
degradation in peak finding performance due to
compression of the audio recordings, accurate range
measurements are still obtained with outlier rejection
and careful tuning of the threshold levels. Optimization
of the code to use fixed-point only calculations, which
improve speed on the limited resources of processors on
the SAS, phones and similar devices, is currently work
in progress. The authors are also looking to use the
temperature and humidity sensors available in the test
platform as a possible way to correct for global
variations in sound speed, however it has been
observed[6] that local variations, such as air outlets
between nodes can have a significant effect in sound
based ranging approaches. Statistical analysis of repeat
measurements and calibration for a known separation
between a sensor pair may provide effective scaling in
future tests on generic sensor networks.
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